SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Al-Nuaimi M, Wibowo S, Qu H, Aitken J, Veres S. J. Sens. Actuat. Netw. 2021; 10(3): e42.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/jsan10030042

PMID

unavailable

Abstract

The evolution of driving technology has recently progressed from active safety features and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market requires not only simulation and testing but formal verification to account for all possible traffic scenarios. A new verification approach, which combines the use of two well-known model checkers: model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a belief-desire-intention (BDI) architecture, which uses a model of the environment and is connected to the RA for verification of decision-making, and (3) a feedback control systems for following a self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic during design-time. PRISM is used to provide the RA with the probability of success while it decides to take action during run-time operation. This allows the RA to select movements of the highest probability of success from several generated alternatives. This framework has been tested on a new AV software platform built using the robot operating system (ROS) and virtual reality (VR) Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in a realistic environment. A practical implementation of the AV system was also carried out on the experimental testbed.


Language: en

Keywords

decision-making; formal verification; model checking; rational agent; ROS; self-driving vehicle

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print