SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang Y, He BJ, Kang C, Yan L, Chen X, Yin M, Liu X, Zhou T. Front. Public Health 2022; 10: e1011391.

Copyright

(Copyright © 2022, Frontiers Editorial Office)

DOI

10.3389/fpubh.2022.1011391

PMID

36408005

PMCID

PMC9672686

Abstract

Actively addressing urban heat challenges is an urgent task for numerous cities. Existing studies have primarily developed heat mitigation strategies and analyzed their cooling performance, while the adaptation strategies are far from comprehensive to protect citizens from heat-related illnesses and deaths. To address this research gap, this paper aims to enhance people's adaptation capacity by investigating walkability within fifteen-minute cities (FMC). Taking cognizance of thermal comfort, health, and safety, this paper developed a dynamic attenuation model (DAM) of heat stress, along with heat stress aggravation, continuance, and alleviation. An indicator of remaining tolerant heat discomfort (R (t) ) was proposed with the integration of the Universal Thermal Climate Index (UTCI) to assess heat-related walkability. Following an empirical study among 128 residents in Mianyang, China, and assessing four levels of heat stress, the maximum tolerant heat discomfort was determined to be 60 min. Furthermore, the DAM was applied to an FMC with 12 neighborhoods in Fucheng, Mianyang, China. The results indicate that for each neighborhood, the street was generally walkable with an R (t) ranging between 15 and 30 min, after walking for 900 m. A population-based FMC walkability was further determined, finding that the core area of the FMC was favorable for walking with an R (t) of 45-46 min, and the perpetual areas were also walkable with an R (t) of 15-30 min. Based on these results, suggestions on the frequency of public services (frequently used, often used, and occasionally used) planning were presented. Overall, this paper provides a theoretical model for analyzing walkability and outlines meaningful implications for planning heat adaptation in resilient, safe, comfortable, and livable FMCs.


Language: en

Keywords

Humans; Residence Characteristics; Walking; Cities; *Environment Design; *Thermotolerance; 15-min city; dynamic attenuation model; ENVI-met; extreme heat; thermal comfort; UTCI

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print