SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vorn R, Devoto C, Meier TB, Lai C, Yun S, Broglio SP, Mithani S, McAllister TW, Giza CC, Kim HS, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz KM, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, McCrea MA, Gill JM. J. Sport Health Sci. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Shanghai University of Sport, Publisher Elsevier Publishing)

DOI

10.1016/j.jshs.2022.11.007

PMID

36403906

Abstract

BACKGROUND: Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion (SRC).

METHODS: This was a multicenter, prospective, case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the NCAA-DoD Concussion Assessment, Research, and Education (CARE) Consortium conducted between 2015 and 2019. The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints. Athletes with concussion were divided into 6 h post-injury (0-6 h post-injury) and after 6 h post-injury (7-48 hours post-injury) groups. We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305 proteins in plasma samples from athletes with and without SRC.

RESULTS: A total of 140 athletes with concussion (79.3% male; aged 18.71 ± 1.10 years, mean ± SD) and 21 non-concussed athletes (76.2% male; 19.14 ± 1.10 years) were included in this study. We identified 338 plasma proteins that significantly differed in abundance (319 upregulated and 19 downregulated) in concussed athletes compared to non-concussed athletes. The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve (AUC) of 0.954 (95% confidence interval: 0.922‒0.986). Specifically, after 6 h of injury, the individual AUC of plasma erythrocyte membrane protein band 4.1 (EPB41) and alpha-synuclein (SNCA) were 0.956 and 0.875, respectively. The combination of EPB41 and SNCA provided the best AUC (1.000), which suggests this combination of candidate plasma biomarkers is best for diagnosing concussion in athletes after 6 h of injury.

CONCLUSION: Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury.


Language: en

Keywords

Concussion; Biomarkers; College athletes; Mild traumatic brain injury; Sport injury

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print