SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nordin N, Zainol Z, Mohd Noor MH, Chan LF. Asian J. Psychiatry 2022; 79: e103316.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.ajp.2022.103316

PMID

36395702

Abstract

Machine learning approaches have been used to develop suicide attempt predictive models recently and have been shown to have a good performance. However, those proposed models have difficulty interpreting and understanding why an individual has suicidal attempts. To overcome this issue, the identification of features such as risk factors in predicting suicide attempts is important for clinicians to make decisions. Therefore, the aim of this study is to propose an explainable predictive model to predict and analyse the importance of features for suicide attempts. This model can also provide explanations to improve the clinical understanding of suicide attempts. Two complex ensemble learning models, namely Random Forest and Gradient Boosting with an explanatory model (SHapley Additive exPlanations (SHAP)) have been constructed. The models are used for predictive interpretation and understanding of the importance of the features. The experiment shows that both models with SHAP are able to interpret and understand the nature of an individual's predictions with suicide attempts. However, compared with Random Forest, the results show that Gradient Boosting with SHAP achieves higher accuracy and the analyses found that history of suicide attempts, suicidal ideation, and ethnicity as the main predictors for suicide attempts.


Language: en

Keywords

Ensemble learning; Explainable AI; Predictive model; SHAP; Suicide attempt risk

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print