SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cheng Y, Wu K, Li H, Parker S, Ran B, Noyce D. Transp. Res. Rec. 2022; 2676(11): 377-384.

Copyright

(Copyright © 2022, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221092716

PMID

unavailable

Abstract

Work zones are essential to maintain and improve road infrastructure. However, work zones affect traffic safety, and crashes and fatalities associated with work zones in the U.S.A. have increased substantially. Most existing work zone crash studies are not able to support the improvement of work zone planning and configuration, despite providing insights about individual crash level attributes. This study proposes an artificial neural network-based approach to predict the crash occurrence in work zones using only work zone configurations and design parameters. The goal is to explore whether using simple work zone configuration features available at the planning stage as the input can achieve satisfactory work zone crash prediction. The performance of the proposed model is satisfactory and comparable with existing studies using more comprehensive features. The proposed approach, early in the work zone design and planning stage, can provide designers and decision-makers with quick work zone safety evaluation for design alternatives and suggest extra resources and attention needed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print