SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Harth M, Bin Amjad U, Kates R, Bogenberger K. Transp. Res. Rec. 2022; 2676(10): 291-302.

Copyright

(Copyright © 2022, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221089316

PMID

unavailable

Abstract

In recent years, there have been intensive efforts to consider human factors (HFs) in the modeling of human driver behavior. In particular, ?engineering? car-following models widely used in traffic simulation have been extended to include HFs. This extension is needed to generate critical situations, which are often attributable to human error. However, incorporation of reaction processes requires advanced models that take driver predictions and delayed responses into account. In this paper, a methodology for integrating HFs into driver behavior modeling is developed based on a long short-term memory architecture. The proposed methodology employed a three-layer psychological concept: perception, information processing, and action. The perception layer modeled (imperfect) estimation of visually received stimuli. Information processing included short-term memory and the projection of perceived stimuli into the near future. The executed action, based on the sensed as well as anticipated dynamic driving state, was delayed by the perception?reaction time. To represent individual differences among driver types, the available training dataset was classified in four clusters according to observable driver characteristics. The methodology was demonstrated with data recorded at an urban signalized intersection. Model performance was compared with that of two established engineering models, the intelligent driver model and the (extended) full velocity difference model. The results indicated that the human driver model developed here showed superior performance in replicating real-world trajectories compared with existing models and was able to represent the varying driving strategies of different groups.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print