SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sharma LK, Gupta R, Fatima N, Sharma LK, Gupta R, Fatima N. Int. J. Wildland Fire 2022; 31(8): 735-758.

Copyright

(Copyright © 2022, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF22016

PMID

unavailable

Abstract

Increasing numbers and intensity of forest fires indicate that forests have become susceptible to fires in the tropics. We assessed the susceptibility of forests to fire in India by comparing six machine learning (ML) algorithms. We identified the best-suited ML algorithms for triggering a fire prediction model, using minimal parameters related to forests, climate and topography. Specifically, we used Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspots from 2001 to 2020 as training data. The Area Under the Receiver Operating Characteristics Curve (ROC/AUC) for the prediction rate showed that the Support Vector Machine (SVM) (ROC/AUC = 0.908) and Artificial Neural Network (ANN) (ROC/AUC = 0.903) show excellent performance. By and large, our results showed that north-east and central India and the lower Himalayan regions were highly susceptible to forest fires. Importantly, the significance of this study lies in the fact that it is possibly among the first to predict forest fire susceptibility in the Indian context, using an integrated approach comprising ML, Google Earth Engine (GEE) and Climate Engine (CE).


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print