SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu J, Zhu Y, Liu Y, Chen J, Guo L, Xie J. Anal. Methods 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Royal Society of Chemistry Publishing (Great Britain))

DOI

10.1039/d2ay01307j

PMID

36285727

Abstract

Organophosphorus nerve agents (OPNAs), such as Sarin (GB), Tabun (GA), Soman (GD) and VX, would cause tremendous harm in military and terrorist attacks, and thus the development of simple methods for the rapid and efficient detection of these hazardous substances is of great necessity. Herein, we present a novel approach for the facile, rapid and sensitive detection of real OPNAs. The detection substrate is fabricated using functionalized silver nanoparticles (AgNPs) immobilized with acetylcholinesterase (AChE) and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). In the absence of OPs, AChE catalyzes the hydrolysis of acetylthiocholine (ATCh) to form thiocholine (TCh), which continues to interact quickly with DTNB to produce a very sensitive Raman probing molecule, TNB. The inhibition of the activity of AChE by OPs could induce an obvious decrease of characteristic Raman peaks of 5-thio-2-nitrobenzoic acid (TNB) at 1335 cm(-1). The introduction of DTNB as an enzyme activity indicator significantly improves the detection sensitivity with distinct characteristic Raman peaks. The LOD of GD, which is one of the most easily aged OPNAs, could reach 0.1 nM due to its strongest inhibition of AChE. Moreover, various OPNAs exhibit different SERS intensities due to their different inhibition capacities of AChE. Hence, the new strategy has great potential in public security early warning and environmental analysis.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print