SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu P, Zhou Z, Geng Z. Sci. Rep. 2022; 12(1): e17899.

Copyright

(Copyright © 2022, Nature Publishing Group)

DOI

10.1038/s41598-022-22564-8

PMID

36284147

Abstract

Coal is one of the main energy sources in China. The country attaches great importance to the development of coal mining industry, and coal production is on the rise. At the same time, mine safety accidents are becoming more and more frequent, and the country is paying more and more attention to mine safety accidents. The underground environment of coal mine is complex, noisy and uneven, and there will be problems such as occlusion and high false detection rate during video monitoring. In order to ensure the safety of underground personnel, moving target detection and tracking based on video monitoring information is of great significance for coal mine safety production. The purpose of this paper is to study how to analyze and study the monitoring of moving targets in coal mines based on computer vision processing, and describe the image processing methods. This paper puts forward the problem of target monitoring, which is based on image processing, and then elaborates on the concept of image enhancement and related algorithms. From the average gradient, the algorithm in this paper is 56.60% higher than the histogram equalization algorithm, and 68.26% higher than the dark primary color prior dehazing algorithm. and designs and analyzes cases of image enhancement in coal mines. The experimental results show that the information entropy of the algorithm in this paper is 31.10% higher than that of the dark primary color prior dehazing algorithm, and 18.72% higher than that of the histogram equalization algorithm. It can be seen that the algorithm in this paper can achieve better enhancement effect.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print