SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

D'Cruz JJM, Alex AP, Manju VS. Arch. Transp. 2022; 62(2): 39-48.

Copyright

(Copyright © 2022, Warsaw University of Technology)

DOI

10.5604/01.3001.0015.9175

PMID

unavailable

Abstract

Mode choice analysis of school trips becomes important due to the fact that these trips contribute to the second largest share of peak hour traffic. This scenario is more relevant in India, which has almost 265 million students enrolled in different accredited urban and rural schools of India, from Class I to XII as per the UDISE report of 2019-20. Thus, it becomes necessary to understand what mode of transport will be mostly used for school trips in order to design an efficient transportation system. Modal attributes and socio-economic characteristics are mostly considered as explana-tory variables in travel mode choice models. Multinomial Logit (MNL) model is one of the classic models used in the development of mode choice models. These logistic regression models predict outcomes based on a set of independent variables. With the recent advances in machine learning, transportation problems are getting a wide arena of methods and solutions. Among them the method of ensemble learning is finding a prominent place in contemporary modelling. This study explores the potential of using ensembles of random decision trees in mode choice analysis by Random Forest Technique with a comparative analysis on conventional method. It was observed that Random Forest method outperforms MNL method in predicting the mode choice preference of students. The high accuracy of machine learning models is mainly due to its ability to consider complex nonlinear relationship between socio-economic attributes and travel mode choice. These models can learn and identify pattern characteristics extracted from sample data and form adaptive structures through computational process thereby offering insights into the relationships between variables that random utility models cannot recognize. This study considered activity -travel information, personal data and household characteristics of students as attributes for model development and observed that the age of the student and distance of school from home plays a significant role in deciding the mode choice of school trips.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print