SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Patton DA, Huber CM, Margulies SS, Master CL, Arbogast KB. Biomed. Sci. Instrum. 2021; 57(2): 106-113.

Copyright

(Copyright © 2021, Instrument Society of America)

DOI

10.34107/yhpn9422.04106

PMID

36238448

PMCID

PMC9555802

Abstract

Previous studies have investigated the head impact kinematics of purposeful heading in youth soccer; however, less than a third of all head injuries in youth soccer have been found to involve ball contact. The aim of the current study was to identity the head impact kinematics and exposure not associated with purposeful heading of the ball in male youth soccer. Headband-mounted sensors were used to monitor the head kinematics of male junior varsity and middle school teams during games. Video analysis of sensor-recorded events was used to code impact mechanism, surface and site. Junior varsity players had non-header impact rates of 0.28 per athlete-exposure (AE) and 0.37 per player-hour (PH), whereas middle school players had relatively lower non-header impact rates of 0.16 per AE and 0.25 per PH. Such impact rates fell within the large range of values reported by previous studies, which is likely affected by sensor type and recording trigger threshold. The most common non-header impact mechanism in junior varsity soccer was player contact, whereas ball-to-head was the most common non-header impact mechanism in middle school soccer. Non-header impacts for junior varsity players had median peak kinematics of 31.0 g and 17.4 rad/s. Non-header impacts for middle school players had median peak kinematics of 40.6 g and 16.2 rad/s. For non-header impacts, ball impacts to the rear of the head the highest peak kinematics recorded by the sensor. Such data provide targets for future efforts in injury prevention, such as officiating efforts to control player-to-player contact.


Language: en

Keywords

injury prevention; concussion; biomechanics; head impact sensor; soccer

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print