SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vajiac C, Chau DH, Olligschlaeger A, Mackenzie R, Nair P, Lee MC, Li Y, Park N, Rabbany R, Faloutsos C. IEEE Trans. Vis. Comput. Graph. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TVCG.2022.3209403

PMID

36201417

Abstract

Law enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TRAFFICVIS, the first interface for cluster-level HT detection and labeling. Developed through months of participatory design with domain experts, TRAFFICVIS provides coordinated views in conjunction with carefully chosen backend algorithms to effectively show spatio-temporal and text patterns to a wide variety of anti-HT stakeholders. We build upon state-of-the-art text clustering algorithms by incorporating shared metadata as a signal of connected and possibly suspicious activity, then visualize the results. Domain experts can use TRAFFICVIS to label clusters as HT, or other, suspicious, but non-HT activity such as spam and scam, quickly creating labeled datasets to enable further HT research. Through domain expert feedback and a usage scenario, we demonstrate TRAFFICVIS's efficacy. The feedback was overwhelmingly positive, with repeated high praises for the usability and explainability of our tool, the latter being vital for indicting possible criminals.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print