SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Fischer J, Nelson T, Winters M. Transp. Res. Interdiscip. Persp. 2022; 15: e100667.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.trip.2022.100667

PMID

unavailable

Abstract

COVID-19 prompted a bike boom and cities around the world responded to increased demand for space to ride with street reallocations. Evaluating these interventions has been limited by a lack of spatially-temporally continuous ridership data. Our paper aims to address this gap using crowdsourced data on bicycle ridership. We evaluate changes in spatial patterns of bicycling during the first wave of the COVID-19 pandemic (Apr - Oct 2020) in Vancouver, Canada using Strava data and a local indicator of spatial autocorrelation. We map statistically significant change in ridership and reference clusters of change to a high-resolution base map. Amongst streets where bicycling increased, we measured the proportion of increase occurring on pre-existing bicycle facilities or street reallocations compared to streets without. In all our analyses, we evaluate patterns across subsets of Strava data representing recreation, commuting, and ridership generated by women and older adults (55 + ). We found consistent and unique patterns by trip purpose and demographics: samples generated by women and older adults showed increases near green and blue spaces and on street reallocations that increased access to parks, and these patterns were also mirrored in the recreation sample. Commute ridership highlighted distinct patterns of increase around the hospital district. Across all subsets most increases occurred on bicycle facilities (pre-existing or provisional), with a strong preference for high-comfort facilities. We demonstrate that changes in spatial patterns of bicycle ridership can be monitored using Strava data, and that nuanced patterns can be identified using trip and demographic labels in the data.


Language: en

Keywords

Bicycle infrastructure; Bicycling ridership; COVID-19; Crowdsourced; Spatial statistics; Strava; Street reallocations

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print