SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yang B, Tian Y, Wang J, Hu X, An S. Transp. Policy 2022; 127: 1-14.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.tranpol.2022.08.002

PMID

unavailable

Abstract

Traffic analysis zone (TAZ) is the basic unit of urban transportation planning. The appropriateness of TAZ delineation will affect the rationality of transportation planning and the accuracy of transportation analysis, and thus affect the final planning decision-making. However, in the big data era, there is still a lack of methods to integrate multi-source data for TAZ delineation. How to effectively fuse multi-source heterogeneous data in the TAZ delineation process is still an unsolved technical difficulty. To fill this gap, this paper designs a multi-source data-driven stepwise strategy to solve the TAZ delineation problem by creating a zoning system with zones showing homogeneous mobility behaviors and containing homogeneous land use characteristics. Firstly, mining the spatial-temporal travel features and land use information of transit stations and parcels from multi-source data, including transit smart card data, ride-hailing data, bike-sharing trip data, and point-of-interest (POI) data. Then, a core parcel determination algorithm which mainly consists of Fuzzy C-Means station clustering and a constructed parcel core degree function is proposed to generate the core parcels of each potential TAZ. After that, parcels are clustered around the core ones into TAZs through a multi-feature driven clustering algorithm, in the process of which the homogeneity within TAZs is guaranteed. Finally, the optimal zoning system is obtained by comparing the information loss calculation result of multiple zoning schemes. Taking Beijing as a case study area, 624 TAZs are obtained by applying the proposed method. The delineation result is comparatively analyzed with TAZs obtained by the traditional delineation method and a baseline method by applying multi-indicator measurement. The result reveals that the presented approach can promote the rationality of TAZ delineation.


Language: en

Keywords

Data driven; Multi-source big data; Traffic analysis zone; Urban transportation planning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print