SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kumar A, Sachdeva N. Multimed. Syst. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Association for Computing Machinery, Publisher Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00530-020-00747-5

PMID

unavailable

Abstract

Cyberbullying is the use of information technology networks by individuals' to humiliate, tease, embarrass, taunt, defame and disparage a target without any face-to-face contact. Social media is the 'virtual playground' used by bullies with the upsurge of social networking sites such as Facebook, Instagram, YouTube and Twitter. It is critical to implement models and systems for automatic detection and resolution of bullying content available online as the ramifications can lead to a societal epidemic. This paper presents a deep neural model for cyberbullying detection in three different modalities of social data, namely textual, visual and info-graphic (text embedded along with an image). The all-in-one architecture, CapsNet-ConvNet, consists of a capsule network (CapsNet) deep neural network with dynamic routing for predicting the textual bullying content and a convolution neural network (ConvNet) for predicting the visual bullying content. The info-graphic content is discretized by separating text from the image using Google Lens of Google Photos app. The perceptron-based decision-level late fusion strategy for multimodal learning is used to dynamically combine the predictions of discrete modalities and output the final category as bullying or non-bullying type. Experimental evaluation is done on a mix-modal dataset which contains 10,000 comments and posts scrapped from YouTube, Instagram and Twitter. The proposed model achieves a superlative performance with the AUC-ROC of 0.98.


Language: en

Keywords

Capsule network; Convolution neural network; Cyberbullying; Deep learning; Multimodal

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print