SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jientrakul R, Yuangyai C, Boonkul K, Chaicharoenwut P, Nilsang S, Pimsakul S. Sustainability (Basel) 2022; 14(16): e10247.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/su141610247

PMID

unavailable

Abstract

Emergency medical service (EMS) base allocation plays a critical role in emergency medical service systems. Fast arrival of an EMS unit to an incident scene increases the chance of survival and reduces the chance of victim disability. However, recently, the allocation strategy has been performed by experts using past data and experiences. This may lead to ineffective planning due to a lack of consideration of a recent and relevant data, such as disaster events, population density, public transportation stations, and public events. Therefore, we propose an approach of the integration of using spatial risk factors and social media factors to identify EMS bases. These factors are combined into a single domain by using the kernel density estimation technique, resulting in a heatmap. Then, the heatmap is used in a modified maximizing covering location problem with a heatmap (MCLP-Heatmap) to allocate ambulance base. To acquire recent data, social media is then used for collecting road accidents, traffic, flood, and fire incidents. Additionally, another data source, spatial risk information, is collected from Bangkok GIS. These data are analyzed using the kernel density estimation method to construct a heatmap before being sent to the MCLP-heatmap to identify EMS bases in the area of interest. In addition, the proposed integrated approach is applied to the Bangkok area with a smaller number of EMS bases than that of the existing approach. The simulated results indicated that the number of covered EMS requests was increased by 3.6% and the number of ambulance bases in action was reduced by approximately 26%. Additionally, the bases defined by the proposed approach covered more area than those of the existing approach.


Language: en

Keywords

covering model; emergency medical service base allocation; kernel density estimation; social media information

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print