SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu P, Korovin I, Gorbachev S, Gorbacheva N, Cao J. Neural. Netw. 2022; 155: 308-317.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.neunet.2022.08.013

PMID

36099663

Abstract

Traffic guidance and traffic control are effective means to alleviate traffic problems. Formulating effective traffic guidance measures can improve the utilization rate of road resources and optimize the performance of the entire traffic network. Assuming that the traffic coordinator can capture traffic flow information in real-time utilizing sensors installed on each road, we consider the strong resilience constraints to construct an optimal selection problem of balanced flow in the traffic network. Based on multi-agent modeling, each agent has access to the corresponding traffic information of each link. We design a distributed optimization algorithm to tackle this optimization problem. In addition to the inherent advantages of distributed multi-agent algorithms, the communication topology among the sensors is allowed to be time-varying, which is more consistent with reality. To prove the effectiveness of the proposed algorithm, we also give a numerical simulation in the multi-agent environment. It should be reiterated that the optimization problem studied in this paper mainly focuses on traffic managers' perspectives. The goal of the studied optimization problem is to minimize the overall cost of the traffic network by adjusting the optimal equilibrium traffic flow. This study provides a reference for solving congestion optimization in today's cities.


Language: en

Keywords

Distributed algorithm; Equilibrium selection; Flow network; Multi-agent system; Strong resilience

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print