SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mahipal V, Alam MAU. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022; 2022: 1028-1031.

Copyright

(Copyright © 2022, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/EMBC48229.2022.9872018

PMID

36086313

Abstract

Drug overdose has become a public health crisis in the United States with devastating consequences. However, most of the drug overdose incidences are the consequence of recitative polysubstance usage over a defined period of time which can be happened by either the intentional usage of required drug with other drugs or by accident. Thus, predicting the effects of polysubstance usage is extremely important for clinicians to decide which combination of drugs should be prescribed. Recent advancement of structural causal models can provide ample insights of causal effects from observational data via identifiable causal directed graphs. In this paper, we propose a system to estimate heterogeneous concurrent drug usage effects on overdose estimation, that consists of efficient co-variate selection, sub-group selection and heterogeneous causal effect estimation. We apply our framework to answer a critical question, 'can concurrent usage of benzodiazepines and opioids have heterogeneous causal effects on the opioid overdose epidemic?' Using Truven MarketScan claim data collected from 2001 to 2013 have shown significant promise of our proposed framework's efficacy. Latest paper and codes can be found here https://arxiv.org/abs/2105.07224.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print