SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lyu J, Shi H, Zhang J, Norvilitis J. Front. Neuroinform. 2022; 16: e961588.

Copyright

(Copyright © 2022, Frontiers Research Foundation)

DOI

10.3389/fninf.2022.961588

PMID

36059864

PMCID

PMC9435582

Abstract

INTRODUCTION: The aim was to explore the neural network prediction model for suicide based on back propagation (BP) and multilayer perceptron, in order to establish the popular, non-invasive, brief and more precise prediction model of suicide.

MATERIALS AND METHOD: Data were collected by psychological autopsy (PA) in 16 rural counties from three provinces in China. The questionnaire was designed to investigate factors for suicide. Univariate statistical methods were used to preliminary filter factors, and BP neural network and multilayer perceptron were employed to establish the prediction model of suicide.

RESULTS: The overall percentage correct of samples was 80.9% in logistic regression model. The total coincidence rate for all samples was 82.9% and the area under ROC curve was about 82.0% in the Back Propagation Neural Network (BPNN) prediction model. The AUC of the optimal multilayer perceptron prediction model was above 90% in multilayer perceptron model. The discrimination efficiency of the multilayer perceptron model was superior to BPNN model.

CONCLUSIONS: The neural network prediction models have greater accuracy than traditional methods. The multilayer perceptron is the best prediction model of suicide. The neural network prediction model has significance for clinical diagnosis and developing an artificial intelligence (AI) auxiliary clinical system.


Language: en

Keywords

suicide; China; BP neural network; multilayer perceptron; prediction model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print