SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bonavita A, Guidotti R, Nanni M. Geoinformatica 2022; 26(3): 451-477.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10707-021-00449-8

PMID

unavailable

Abstract

Identifying the portions of trajectory data where movement ends and a significant stop starts is a basic, yet fundamental task that can affect the quality of any mobility analytics process. Most of the many existing solutions adopted by researchers and practitioners are simply based on fixed spatial and temporal thresholds stating when the moving object remained still for a significant amount of time, yet such thresholds remain as static parameters for the user to guess. In this work we study the trajectory segmentation from a multi-granularity perspective, looking for a better understanding of the problem and for an automatic, user-adaptive and essentially parameter-free solution that flexibly adjusts the segmentation criteria to the specific user under study and to the geographical areas they traverse. Experiments over real data, and comparison against simple and state-of-the-art competitors show that the flexibility of the proposed methods has a positive impact on results.


Language: en

Keywords

Mobility data mining; Segmentation; User modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print