SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang C, He J, Bai C, Yan X, Wang C, Guo Y. J. Adv. Transp. 2022; 2022: e6716275.

Copyright

(Copyright © 2022, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2022/6716275

PMID

unavailable

Abstract

Investigating the relationship between the months and traffic crashes is a foremost task for the safety improvement of mountainous freeways. Taking a mountainous freeway located in China as an example, this paper proposed a combined modeling framework to identify the relationships between months and different crash types. K-means and Apriori were initially used to extract the monthly distribution patterns of different types of crashes. A graphical approach and a risk calculation equation were developed to assess the output of K-means and Apriori. Then, using the assessment results as the input, a logistic regression model was constructed to quantify the effects of each month on crashes. The results indicate that the monthly distribution patterns of different crash types are inconsistent, i.e., for a specific month, the high risk of a certain crash type may be covered up if experts only focus on the total number of crashes. Moreover, when identified as high-risk months by K-means and Apriori, the crash-proneness will significantly increase several times than months identified as high-risk by only one of K-means and Apriori, thereby illustrating the superior performance of the mix-method. The conclusions can assist local relevant organizations in formulating strategies for preventing different types of traffic crashes in different months (e.g., the risk of rear-end crashes in August, the risk of fixed-object hitting crashes in February, and the risk of overturning crashes in October) and provide a methodological reference for relevant studies in other regions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print