SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rafiei A, Fasakhodi AO, Hajati F. Int. J. Automot. Technol. 2022; 23(3): 613-622.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s12239-022-0056-4

PMID

unavailable

Abstract

The use of intelligent systems to prevent accidents and safety enhancement in vehicles is becoming a requirement. Besides, the development of autonomous cars is progressing every day. One of the main challenges in transportation is the high mortality rate of vehicles colliding with pedestrians. This issue becomes severe due to various and abnormal situations. This paper proposes a new intelligent algorithm for pedestrian collision avoidance based on deep reinforcement learning. A deep Q-network (DQN) is designed to discover an optimal driving policy for pedestrian collision avoidance in diverse environments and conditions. The algorithm interacts with the vehicle and the pedestrian agents and uses a specific reward function to train the model. We have used Car Learning to Act (CARLA), an open-source autonomous driving simulator, for training and verifying the model in various conditions. Applying the proposed algorithm to a simulated environment reduces vehicles and pedestrians' collision by about 64 %, depending on the environment. Our findings offer an early-warning solution to mitigate the risk of a crash of vehicles and pedestrians in the real world.


Language: en

Keywords

Autonomous driving; Car Learning to Act (CARLA); Deep Q- Network (DQN); Deep reinforcement learning; Pedestrian collision avoidance

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print