SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mizuno K, Horiki M, Zhao Y, Yoshida A, Wakabayashi A, Hosokawa T, Tanaka Y, Hosokawa N. Accid. Anal. Prev. 2022; 176: e106793.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.aap.2022.106793

PMID

35964394

Abstract

In vehicle-to-pedestrian collisions, pedestrian injuries occur due to contact with the car and the ground. Previous studies investigated pedestrian kinematic behavior using a parameter study or through statistical analysis although the force interaction between the pedestrian and the vehicle has not been considered. In this study, multibody analyses were conducted for vehicle-pedestrian collisions for adult and child pedestrian with various vehicle shapes. The impulse and impulse moment acting on the pedestrian from the vehicle were introduced, and the kinematic behavior, rotation and ground impact of the pedestrian model were examined. It was found that if an impulse moment acts on the pedestrian when the pedestrian re-contacts with the hood of the car, the angular velocity of the pedestrian's torso changes in the opposite direction (away from the car), and the torso angle prior to the ground contact decreases to less than 90°. This re-contact between the pedestrian and the vehicle was more likely to occur for cases where the collision involves an adult pedestrian, lower hood leading edge (HLE), longer hood length, and lower collision velocity. When the pedestrian torso angle in contact with the ground was less than 90°, the head vertical impact velocity with respect to the ground became less than 2.9 m/s which corresponds to the injury threshold of the head. This study demonstrated that pedestrian-vehicle re-contact is crucial for reducing ground injury. The vehicle shape, pedestrian size, and collision velocity can determine whether re-contact of the pedestrian with the vehicle occurs. This can then explain the factors affecting pedestrian ground impact injury (e.g., higher HLE, higher risk of ground head injury for children) that were shown in previous studies. A strategy to mitigate ground injury is to apply enough impulse moment onto the pedestrian's upper body from the hood in order to change the torso angular velocity during re-contact, thus making the torso angle less than 90°prior to the ground contact.


Language: en

Keywords

Pedestrian; Ground injury; Impulse; Multi-body analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print