SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang Z, Nie Q, Liu J, Hainen A, Islam N, Yang C. J. Intell. Transp. Syst. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Informa - Taylor and Francis Group)

DOI

10.1080/15472450.2022.2106564

PMID

unavailable

Abstract

Real-time prediction of crash risk can support traffic incident management by generating critical information for practitioners to allocate resources for responding to anticipated traffic crashes proactively. Unlike previous studies using archived traffic data covering a limited highway environment such as a segment or corridor, this study uses a statewide live traffic database from HERE to develop real-time traffic crash prediction models. This database provides crowdsourced probe vehicle data that are high-resolution real-time traffic speed for the entire freeway network (nearly 2,000 miles) in Alabama. This study aims to use machine learning models to predict crash risk on freeways according to pre-crash traffic dynamics (e.g., mean speed, speed reduction) along with static freeway attributes. Traffic speed characteristics were extracted from the HERE database for both pre-crash and crash-free traffic conditions. Random Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) were developed and compared. Separate models were estimated for three major crash types: single-vehicle, rear-end, and sideswipe crashes. The model prediction accuracy indicated that the RF models outperform other models. Models for rear-end crashes are found to have greater accuracy than other models, which implies that rear-end crashes have a significant relationship with pre-crash traffic dynamics and are more predictable. The traffic speed factors that are ranked high in terms of feature importance are the speed variance and speed reduction prior to crashes. According to partial dependence plots, the rear-end crash risk is positively related to the speed variance and speed reductions. More results are discussed in the paper.


Language: en

Keywords

Crowdsourced probe vehicle data; machine learning; pre-crash traffic dynamics; real-time crash risk prediction; rear-end crash

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print