SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mo Z, Li W, Fu Y, Ruan K, Di X. Transp. Res. C Emerg. Technol. 2022; 141: e103728.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.trc.2022.103728

PMID

unavailable

Abstract

This paper develops a decentralized reinforcement learning (RL) scheme for multi-intersection adaptive traffic signal control (TSC), called "CVLight", that leverages data collected from connected vehicles (CVs). The state and reward design facilitates coordination among agents and considers travel delays collected by CVs. A novel algorithm, Asymmetric Advantage Actor-critic (Asym-A2C), is proposed where both CV and non-CV information is used to train the critic network, while only CV information is used to execute optimal signal timing. Comprehensive experiments show the superiority of CVLight over state-of-the-art algorithms under a 2-by-2 synthetic road network with various traffic demand patterns and penetration rates. The learned policy is then visualized to further demonstrate the advantage of Asym-A2C. A pre-train technique is applied to improve the scalability of CVLight, which significantly shortens the training time and shows the advantage in performance under a 5-by-5 road network. A case study is performed on a 2-by-2 road network located in State College, Pennsylvania, USA, to further demonstrate the effectiveness of the proposed algorithm under real-world scenarios. Compared to other baseline models, the trained CVLight agent can efficiently control multiple intersections solely based on CV data and achieve the best performance, especially under low CV penetration rates.


Language: en

Keywords

Actor–critic algorithm; Connected vehicles; Deep reinforcement learning; Traffic signal control

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print