SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Niu Y, Li Z, Wang E, Shan T, Wang H, Xu S, Sun W, Wang G, Xue X, Liu J. Int. J. Environ. Res. Public Health 2022; 19(15): e8949.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph19158949

PMID

35897320

Abstract

Across the world, coal resource is widely utilized in industrial production. During coal mining activities, dynamic disasters may be induced, such as coal and gas outbursts, or rock burst, resulting in serious accidents or disasters. Previous studies have shown that electric potential (EP) signals can be produced during the deformation and fracture process of coal and rock mass under load. The abnormal response characteristics of EP can reveal the damage evolution and failure feather of coal mass. In this paper, the response characteristics of EP signals are analyzed with high gas testing during mining activities within deep coal seams, and the relationship between the EP response and outburst disaster hazard is studied. The results show that: (1) Under the comprehensive action of mining stress and gas effect, the coal mass was damaged and fractured, which can produce abundant EP signals, while the temporal EP response characteristics can reflect the loading state and damage evolution process inside the coal seam. (2) When coal cannon and a sudden increase of gas concentration occurred in the coal mass, the EP signal was at a high level and fluctuated violently. This can be regarded as precursory information for an outburst risk, which was verified by monitoring the results of mining stress and electromagnetic radiation (EMR). (3) Based on the unilateral inversion imaging method, EP spatial distribution law was studied and abnormal zones with high-value were identified. The zone is close to, or coincident with, the high value interval of EMR intensity and count indexes, which revealed the distribution characteristics of coal damage localization. Hence, EP monitoring results can forecast precursor information of outburst hazards temporally, and identify local zones with outburst hazard spatially. This study provides a new idea and application basis for using the EP method to monitor and prevent coal and rock dynamic disaster hazards in the field.


Language: en

Keywords

Coal; *Disasters; *Coal Mining; deep coal seam; dynamic disaster; electric potential response; Electricity; Electromagnetic Radiation; mining activities; safety monitor

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print