SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chang RCH, Wang CY, Chen WT, Chiu CD. Sensors (Basel) 2022; 22(14): e5380.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22145380

PMID

35891065

Abstract

Accidents caused by fatigue occur frequently, and numerous scholars have devoted tremendous efforts to investigate methods to reduce accidents caused by fatigued driving. Accordingly, the assessment of the spirit status of the driver through the eyes blinking frequency and the measurement of physiological signals have emerged as effective methods. In this study, a drowsiness detection system is proposed to combine the detection of LF/HF ratio from heart rate variability (HRV) of photoplethysmographic imaging (PPGI) and percentage of eyelid closure over the pupil over time (PERCLOS), and to utilize the advantages of both methods to improve the accuracy and robustness of drowsiness detection. The proposed algorithm performs three functions, including LF/HF ratio from HRV status judgment, eye state detection, and drowsiness judgment. In addition, this study utilized a near-infrared webcam to obtain a facial image to achieve non-contact measurement, alleviate the inconvenience of using a contact wearable device, and for use in a dark environment. Furthermore, we selected the appropriate RGB channel under different light sources to obtain LF/HF ratio from HRV of PPGI. The main drowsiness judgment basis of the proposed drowsiness detection system is the use of algorithm to obtain sympathetic/parasympathetic nervous balance index and percentage of eyelid closure. In the experiment, there are 10 awake samples and 30 sleepy samples. The sensitivity is 88.9%, the specificity is 93.5%, the positive predictive value is 80%, and the system accuracy is 92.5%. In addition, an electroencephalography signal was used as a contrast to validate the reliability of the proposed method.


Language: en

Keywords

drowsiness detection; EEG; parasympathetic nervous index; PERCLOS; sympathetic nervous index

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print