SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ning H, Yu Y, Bai L. Sustainability (Basel) 2022; 14(13): e8142.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/su14138142

PMID

unavailable

Abstract

The causes of crashes on urban expressways are mostly related to the unsafe behaviors of drivers before the crash. This study focuses on sideswipe collisions on urban expressways. Through real and visual crash data, 17 unsafe behaviors were identified for the analysis of sideswipe collisions on an urban expressway. The chains of high-risk and unsafe behaviors were then revealed to investigate the relationship between drivers' unsafe behaviors and sideswipe collisions. A Bayesian network diagram of unsafe behaviors was used to obtain the correlation between unsafe behaviors and their influence. A topology diagram of unsafe behaviors was then constructed, and relational reasoning of typical behavioral chains was conducted. Finally, the unsafe behaviors and behavior chains that were likely to cause sideswipe collisions on the urban expressway were determined. The possibility of each behavior chain was quantified through the reasoning of variable structures constructed by the Bayesian network. The result shows that the significant influential single unsafe behavior leading to sideswipe collision on urban expressways was lane change without checking the rearview mirror or not scanning the road around and queue-jumping; moreover, based on unsafe behavior chains analysis, the most influential chains leading to sideswipe collision were: improper driving behavior in an emergency--failure to turn on signal when changing lanes--distracted and inattentive driving. Some safety precautions and countermeasures aimed at unsafe behaviors could be taken before the crash. The results of the study can be used to reduce the number of sideswipe collisions, thereby improving traffic safety on urban expressways.


Language: en

Keywords

generalized additive model; multilevel model; traffic casualty crash; traffic violation behavior

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print