SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Slusher G, Sarfare S, Falciani C, Belwadi A, Maheshwari J. Traffic Injury Prev. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Informa - Taylor and Francis Group)

DOI

10.1080/15389588.2022.2092848

PMID

35862895

Abstract

OBJECTIVES: The aim of this study was to analyze the kinematics and kinetics of a naturalistically seated 6-year-old (6YO) pediatric human body model and evaluate the metrics described by earlier studies for pediatric ATDs to indicate whether different postures and booster seats were more associated with submarining than others in a frontal impact.

METHODS: The PIPER 6YO pediatric human body model was restrained on a lowback (LBB) and a highback (HBB) booster child restraint seat (CRS) in four naturalistic seating postures: leaning-forward, leaning-inboard, leaning-outboard, and a pre-submarining posture, and a baseline reference seating position as per the FMVSS No. 213 protocol. A 2012 mid-size sedan finite element (FE) model was used as the vehicle environment. A standard 3-point lap-shoulder belt system was modeled to restrain the child and the CRS in the left-rear vehicle seat. Additionally, a No-CRS condition was modeled in a reference posture and pre-submarining posture in which the occupant's legs bent over the edge of the rear seat. 12 conditions were simulated in LS-DYNA R10.1.0, and kinematics and kinetics were compared to metrics as per prior literature: 1) maximum femur displacement and pelvis rotation, 2) maximum knee-head excursion and maximum change in torso angle, 3) lap belt trajectory relative to pelvis's coordinate frame.

RESULTS: The pre-submarining posture on the HBB depicted submarining in all metrics except for the lap belt trajectory. Only the pre-submarining posture in No-CRS depicted submarining through analysis of all metrics. For this pre-submarining No-CRS condition, the mid-abdominal compression was approximately 5 times greater than the average of the mid abdominal compression depths of all other cases and maximum abdominal pressure was at least 22.9 kPa higher than the rest of the conditions.

CONCLUSIONS: The results of this study suggest that metrics used to assess submarining for 6YO pediatric occupants in frontal impacts may need to be updated so that they are more accurate for both simulated and physical studies. In addition, the results of this study could be used to design booster seats that discourage postures that could lead to an increased likelihood of submarining-like characteristics in a frontal crash impact.


Language: en

Keywords

Booster seats; finite element analysis; human body model; pediatric occupants; submarining

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print