SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hang J, Yan X, Li X, Duan K. Accid. Anal. Prev. 2022; 174: e106768.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.aap.2022.106768

PMID

35820314

Abstract

Work zone area on roads is a critical component of road networks which concerns the safety of workers and passing by drivers. However, the passive speed reduction and lane changes caused by lane closure have led to frequent rear-end collisions in work zone areas. To help drivers better anticipate work zone situation and reduce collision risks, this paper proposes two types of in-vehicle warnings for work zone areas: Leading Vehicle Brake Warning (LVBW), and Lane-Closed Warning & Leading Vehicle Brake Warning (LCW & LVBW). The LVBW delivers a danger warning message to drivers upon the brake of the leading vehicle, while the LCW & LVBW provides an additional work-zone position message to remind drivers to decelerate in advance. A driving simulator experiment was conducted with 44 participants (24 males and 20 females) to test drivers' performance in work zone area under different conditions, comprising two warning types (LVBW vs. LCW & LVBW), four warning times (3 s, 5 s, 7 s and 9 s) and two visibility conditions (clear and foggy weather). The results showed significant safety benefits of the lane-closed warning message under the LCW & LVBW condition. In contrast, the warning of leading vehicle's brake in both LVBW and LCW & LVBW conditions had limited efficacy, which indicates that earlier warning about lane-closure is important to assist drivers in anticipating the complex situations in work zones. Drivers' speed control and collision avoidance performances were impaired in fog, but the impairment was compensated by the warning messages. Compared with male drivers, female drivers tend to be more cautious when approaching the work zone areas. Overall, this study plays a pioneering role in developing effective safety countermeasures for work zone areas and providing strong support for implementing in-vehicle warning technologies.


Language: en

Keywords

Work zone; Collision avoidance; Driving simulator; In-vehicle warning; Rear-end collision

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print