SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mehdizadeh S, Nabavi H, Sabo A, Arora T, Iaboni A, Taati B. Sci. Data 2022; 9(1): e398.

Copyright

(Copyright © 2022, Nature Publishing Group)

DOI

10.1038/s41597-022-01495-z

PMID

35817777

Abstract

We introduce the Toronto Older Adults Gait Archive, a gait dataset of 14 older adults containing 2D video recordings, and 2D (video pose tracking algorithms) and 3D (inertial motion capture) joint locations of the lower body. Participants walked for 60 seconds. We also collected participants' scores on four clinical assessments of gait and balance, namely the Tinneti performance-oriented mobility assessment (POMA-gait and -balance), the Berg balance scale (BBS), and the timed-up-and-go (TUG). Three human pose tracking models (Alphapose, OpenPose, and Detectron) were used to detect body joint positions in 2D video frames and a number of gait parameters were computed using 2D video-based and 3D motion capture data. To show an example usage of our datasets, we performed a correlation analysis between the gait variables and the clinical scores. Our findings revealed that the temporal but not the spatial or variability gait variables from both systems had high correlations to clinical scores. This dataset can be used to evaluate, or to enhance vision-based pose-tracking models to the specifics of older adults' walking.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print