SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yang W, Tian B, Fang Y, Wu D, Zhou L, Cai J. Int. J. Environ. Res. Public Health 2022; 19(13): e7699.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph19137699

PMID

35805357

Abstract

Hydroplaning risk evaluation plays a pivotal role in highway safety management. It is also an important component in the intelligent transportation system (ITS) ensuring human driving safety. Water-film is the widely accepted vital factor resulting in hydroplaning and thus continuously gained researchers' attention in recent years. This paper provides a new framework to evaluate the hydroplaning potential based on emerging 3D laser scanning technology and water-film thickness estimation. The 3D information of the road surface was captured using a vehicle-mounted Light Detection and Ranging (LiDAR) system and then processed by a wavelet-based filter to remove the redundant information (surrounding environment: trees, buildings, and vehicles). Then, the water film thickness on the given road surface was estimated based on a proposed numerical algorithm developed by the two-dimensional depth-averaged Shallow Water Equations (2DDA-SWE). The effect of the road surface geometry was also investigated based on several field test data in Shanghai, China, in January 2021. The results indicated that the water-film is more likely to appear on the rutting tracks and the pavement with local unevenness. Based on the estimated water-film, the hydroplaning speeds were then estimated to represent the hydroplaning risk of asphalt pavement in rainy weather. The proposed method provides new insights into the water-film estimation, which can help drivers make effective decisions to maintain safe driving.


Language: en

Keywords

3D laser scanning; hydroplaning risk; LiDAR; pavement profile; water-film thickness

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print