SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Go MJ, Park M, Yeo J. J. Korea Inst. Intell. Transp. Syst. 2022; 21(1): 105-122.

Vernacular Title

Faster R-CNN을 이용한 갓길 차로 위반 차량 검출

Copyright

(Copyright © 2022, Korea Institute of Intelligent Transportation Systems)

DOI

10.12815/kits.2022.21.1.105

PMID

unavailable

Abstract

According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

===

최근 5년간 고속도로에서 발생한 사망 사고의 통계를 살펴보면, 고속도로 전체 사망자 중 갓길에서 발생한 사망자의 사망률이 약 3배 높은 것으로 나타났다. 이는 갓길 사고 발생 시 사고의 심각도가 매우 높다는 것을 보여주며, 갓길 차로 위반 차량을 단속하여 사고를 미연에 방지하는 것이 중요하다는 것을 시시한다. 이에 본 연구는 Faster R-CNN 기법을 활용하여 갓길 차로 위반 차량을 검출할 수 있는 방법을 제안하였다. Faster R-CNN 기법을 기반으로 차량을 탐지하고, 추가적인 판독 모듈을 구성하여 갓길 위반 여부를 판단하였다. 실험 및 평가를 위해 현실세계와 유사하게 상황을 재현할 수 있는 시뮬레이션 게임인 GTAV를 활용하였다. 이미지 형태의 학습데이터 1,800장과 평가데이터 800장을 가공 및 생성하였으며, ZFNet과 VGG16에서 Threshold 값의 변화에 따른 성능을 측정하였다. 그 결과 Threshold 0.8 기준 ZFNet 99.2%, Threshold 0.7 기준 VGG16 93.9%의 검출율을 보였고, 모델 별 평균 검출 속도는 ZFNet 0.0468 초, VGG16 0.16초를 기록하여 ZFNet의 검출율이 약 7% 정도 높았으며, 검출 속도 또한 약 3.4 배 빠름을 확인하였다. 이는 비교적 복잡하지 않은 네트워크에서도 입력 영상의 전처리 없이 빠른 속도로 갓길 차로 위반 차량의 검출이 가능함을 보여주며, 실제 영상자료 기반의 학습 데이터셋을 충분히 확보한다면 지정 차로 위반 검출에 본 알고리즘을 활용할 수 있다는 것을 시사한다.


Language: ko

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print