SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Deng L, Li H, Liu H, Gu J. Sci. Rep. 2022; 12(1): 10981.

Copyright

(Copyright © 2022, Nature Publishing Group)

DOI

10.1038/s41598-022-15272-w

PMID

35768467

Abstract

YOLOv3 is a popular and effective object detection algorithm. However, YOLOv3 has a complex network, and floating point operations (FLOPs) and parameter sizes are large. Based on this, the paper designs a new YOLOv3 network and proposes a lightweight object detection algorithm. First, two excellent networks, the Cross Stage Partial Network (CSPNet) and GhostNet, are integrated to design a more efficient residual network, CSP-Ghost-Resnet. Second, combining CSPNet and Darknet53, this paper designs a new backbone network, the ML-Darknet, to realize the gradient diversion of the backbone network. Finally, we design a lightweight multiscale feature extraction network, the PAN-CSP-Network. The newly designed network is named mini and lightweight YOLOv3 (ML-YOLOv3). Based on the helmet dataset, the FLPSs and parameter sizes of ML-YOLOv3 are only 29.7% and 29.4% of those of YOLOv3. Compared with YOLO5, ML-YOLOv3 also exhibits obvious advantages in calculation cost and detection effect.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print