SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Salimi M, Machado JJM, Tavares JMRS. Sensors (Basel) 2022; 22(12): e4544.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22124544

PMID

35746325

Abstract

Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.


Language: en

Keywords

machine learning; deep learning; computer vision; image analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print