SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li S, Sultonov F, Ye Q, Bai Y, Park JH, Yang C, Song M, Koo S, Kang JM. Sensors (Basel) 2022; 22(12): e4438.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22124438

PMID

35746220

Abstract

Road segmentation has been one of the leading research areas in the realm of autonomous driving cars due to the possible benefits autonomous vehicles can offer. Significant reduction of crashes, greater independence for the people with disabilities, and reduced traffic congestion on the roads are some of the vivid examples of them. Considering the importance of self-driving cars, it is vital to develop models that can accurately segment drivable regions of roads. The recent advances in the area of deep learning have presented effective methods and techniques to tackle road segmentation tasks effectively. However, the results of most of them are not satisfactory for implementing them into practice. To tackle this issue, in this paper, we propose a novel model, dubbed as TA-Unet, that is able to produce quality drivable road region segmentation maps. The proposed model incorporates a triplet attention module into the encoding stage of the U-Net network to compute attention weights through the triplet branch structure. Additionally, to overcome the class-imbalance problem, we experiment on different loss functions, and confirm that using a mixed loss function leads to a boost in performance. To validate the performance and efficiency of the proposed method, we adopt the publicly available UAS dataset, and compare its results to the framework of the dataset and also to four state-of-the-art segmentation models. Extensive experiments demonstrate that the proposed TA-Unet outperforms baseline methods both in terms of pixel accuracy and mIoU, with 98.74% and 97.41%, respectively. Finally, the proposed method yields clearer segmentation maps on different sample sets compared to other baseline methods.


Language: en

Keywords

road feasible domain segmentation; TA-Unet; triplet attention module; U-Net

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print