SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mredula MS, Dey N, Rahman MS, Mahmud I, Cho YZ. Sensors (Basel) 2022; 22(12): 4531.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22124531

PMID

35746313

Abstract

Social media platforms have many users who share their thoughts and use these platforms to organize various events collectively. However, different upsetting incidents have occurred in recent years by taking advantage of social media, raising significant concerns. Therefore, considerable research has been carried out to detect any disturbing event and take appropriate measures. This review paper presents a thorough survey to acquire in-depth knowledge about the current research in this field and provide a guideline for future research. We systematically review 67 articles on event detection by sensing social media data from the last decade. We summarize their event detection techniques, tools, technologies, datasets, performance metrics, etc. The reviewed papers mainly address the detection of events, such as natural disasters, traffic, sports, real-time events, and some others. As these detected events can quickly provide an overview of the overall condition of the society, they can significantly help in scrutinizing events disrupting social security. We found that compatibility with different languages, spelling, and dialects is one of the vital challenges the event detection algorithms face. On the other hand, the event detection algorithms need to be robust to process different media, such as texts, images, videos, and locations. We outline that the event detection techniques compatible with heterogeneous data, language, and the platform are still missing. Moreover, the event and its location with a 24 × 7 real-time detection system will bolster the overall event detection performance.


Language: en

Keywords

event detection; social media; review; deep machine learning; shallow machine learning; social sensing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print