SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gao F, Hu M, Zhang J, Hashem J, Chen C. Acta Neuropathol. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00401-022-02449-w

PMID

35713704

Abstract

Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.


Language: en

Keywords

Traumatic brain injury; Mild closed head injury; Neurodegeneration; Neuroinflammation; Synaptic plasticity; Tau phosphorylation; TDP-43

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print