SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang S, Li H. Occup. Ther. Int. 2022; 2022: e1723736.

Copyright

(Copyright © 2022, John Wiley and Sons)

DOI

10.1155/2022/1723736

PMID

35685225

PMCID

PMC9166964

Abstract

This paper constructs an algorithm for youth school violence recognition and an occupational therapy education model for victims through the extraction of action speech features. For the characteristics of violent actions and daily actions, action features in time and frequency domains are extracted and action categories are recognized by BP neural network; for complex actions, it is proposed to decompose complex actions into basic actions to improve the recognition rate; then, LDA dimensionality reduction algorithm is introduced for the problem of the high complexity of algorithm due to high dimensionality of features, and the feature dimensionality is reduced to 8 dimensions by LDA dimensionality reduction algorithm, which reduces the system running time by about 51% and improves the accuracy of violent action recognition by 3.3% while ensuring the overall performance of the system. The LDA dimensionality reduction algorithm reduces the number of features to 8 dimensions, which reduces the running time of the system by 51%, increases the accuracy rate of violent action recognition by 3.3%, and increases the recall rate of violent action recognition by 8.86% while ensuring the overall performance of the system. Based on the classical D-S theory, we proposed an improved D-S evidence fusion algorithm by modifying the original evidence model with a new probability distribution function and constructing new fusion rules, which can solve the fusion conflict problem well. The recall rate for violent actions is increased to 90.0%, thus reducing the missed alarm rate of the system.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print