SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen H, Jiang G, Zhao X, Zhu D, Liu Y, Tian H. Materials (Basel) 2022; 15(11): e3982.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ma15113982

PMID

35683280

Abstract

In order to study the instability development process of the slope reinforced by anti-slide piles under earthquake conditions, the dynamic response characteristics of the slope are usually taken as the main characteristics, and the model test and numerical simulation are the main research methods. In this paper, a shaking table model test is designed and completed to investigate the influence of anti-slide piles with different initial damage on the failure mode of high and steep slope under earthquake conditions. The changes in velocity, strain and natural frequency during slope vibration are tested in combination with cloud maps when sinusoidal waves of different accelerations with a peak value of 5 Hz are applied. Thus, the differences of slope failure development process and dynamic response characteristics are obtained. The experimental results show that the anti-slide pile with different initial damage has obvious influence on the slope instability process. Under the condition of good anti-slide pile quality, the failure development of the slope behind the pile is limited to soil sliding on top of the slope, slope sliding and overburden sliding; the front slope foot of pile mainly forms shear belt and local sliding. With the decrease in the initial mass of the anti-slide pile, the slope failure develops into topsoil sliding, slope sliding and deep integral sliding; analogously, the failure of the slope in front of the pile develops into a whole slip along the slip belt. The natural frequency cloud map can directly reflect the damage location of the slope, and the frequency change rate is positively correlated with the cumulative shear strain. It shows that the macro-failure characteristics of the model slope change well when the natural frequency is used as the sensitive index to measure the influence of vibration on the model slope. The threshold value of the natural frequency change rate can distinguish different development stages of the slope; 1% is the threshold value of stage II, and 1.5% is the threshold value of stage III.


Language: en

Keywords

anti-slide pile; earthquake dynamic response characteristics; frequency change rate; initial damage; shaking table test

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print