SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao C, Zhao X, Li Z, Zhang Q. Sustainability (Basel) 2022; 14(11): e6829.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/su14116829

PMID

unavailable

Abstract

This study is conducted on a real live highway to investigate the driver's performance in estimating the speed and distance of vehicles behind the target lane during lane changes. Data on the participants' estimated and actual data on the rear car were collected in the experiment. Ridge regression is used to analyze the effects of both the driver's features, as well as the relative and absolute motion characteristics between the target vehicle and the subject vehicle, on the driver's estimation outcomes. Finally, a mixed algorithm of extreme gradient boosting (XGBoost) and deep neural network (DNN) was proposed in this paper for establishing driver's speed estimation and distance prediction models. Compared with other machine learning models, the XGBoost-DNN prediction model performs more accurate prediction performance in both classification scenarios. It is worth mentioning that the XGBoost-DNN mixed model exhibits a prediction accuracy approximately two percentage points higher than that of the XGBoost model. In the two-classification scenarios, the accuracy estimations of XGBoost-DNN speed and distance prediction models are 91.03% and 92.46%, respectively. In the three-classification scenarios, the accuracy estimations of XGBoost-DNN speed and distance prediction models are 87.18% and 87.59%, respectively. This study can provide a theoretical basis for the development of warning rules for lane-change warning systems as well as insights for understanding lane-change decision failures.


Language: en

Keywords

distance estimation; lane-changing decision; prediction model; speed estimation; XGBoost-DNN algorithm

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print