SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lien WC, Ching CTS, Lai ZW, Wang HMD, Lin JS, Huang YC, Lin FH, Wang WF. Front. Bioeng. Biotechnol. 2022; 10: e887269.

Copyright

(Copyright © 2022, Frontiers Media)

DOI

10.3389/fbioe.2022.887269

PMID

35646883

PMCID

PMC9136169

Abstract

This study aimed to use the k-nearest neighbor (kNN) algorithm, which combines gait stability and symmetry derived from a normalized cross-correlation (NCC) analysis of acceleration signals from the bilateral ankles of older adults, to assess fall risk. Fifteen non-fallers and 12 recurrent fallers without clinically significant musculoskeletal and neurological diseases participated in the study. Sex, body mass index, previous falls, and the results of the 10 m walking test (10 MWT) were recorded. The acceleration of the five gait cycles from the midsection of each 10 MWT was used to calculate the unilateral NCC coefficients for gait stability and bilateral NCC coefficients for gait symmetry, and then kNN was applied for classifying non-fallers and recurrent fallers. The duration of the 10 MWT was longer among recurrent fallers than it was among non-fallers (p < 0.05). Since the gait signals were acquired from tri-axial accelerometry, the kNN F1 scores with the x-axis components were 92% for non-fallers and 89% for recurrent fallers, and the root sum of squares (RSS) of the signals was 95% for non-fallers and 94% for recurrent fallers. The kNN classification on gait stability and symmetry revealed good accuracy in terms of distinguishing non-fallers and recurrent fallers. Specifically, it was concluded that the RSS-based NCC coefficients can serve as effective gait features to assess the risk of falls.


Language: en

Keywords

older adults; fall risk; gait; stability; accelerometry; symmetry

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print