SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao H, Gunardi W, Liu Y, Kiew C, Teng TH, Yang XB. J. Transp. Eng. A: Systems 2022; 148(7): e04022044.

Copyright

(Copyright © 2022, American Society of Civil Engineers)

DOI

10.1061/JTEPBS.0000688

PMID

unavailable

Abstract

Traffic incidents are a primary cause of traffic delays, which can cause severe economic losses. Effective traffic incident management requires integrating intelligent traffic systems, information dissemination, and the accurate prediction of incident duration. This study develops a clustering-based machine learning model to predict the incident duration. Unlike similar studies that train separate machine learning models for a fixed number of clusters, this study proposes an ensemble learning method based on multiple clustered individual models that can provide good and diverse prediction performance. The K-means clustering method is used in this study as a bootstrapping technique in the ensemble learning approach, with the individual models based on the artificial neural network model and random forest regression model. The models are tested using the incident data from Singapore, and the results show that the ensemble model outperforms both the traditional model with fixed clusters and the classical model without clustering. Additionally, this study attempted to determine the significance of different variables on traffic incident durations using the random forest feature importance function. The prediction of incident duration and the analysis of influence factors can contribute to several aspects of traffic management, such as improving traffic dissemination to mitigate traffic congestion caused by incidents.


Language: en

Keywords

Clustering model; Ensemble learning; Incident duration prediction; Neural network; Random forest (RF); Traffic accidents

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print