SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Buchman D, Drozdov M, Krilavičius T, Maskeliūnas R, Damaševičius R. Sensors (Basel) 2022; 22(9): e3456.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22093456

PMID

35591146

Abstract

Pedestrian occurrences in images and videos must be accurately recognized in a number of applications that may improve the quality of human life. Radar can be used to identify pedestrians. When distinct portions of an object move in front of a radar, micro-Doppler signals are produced that may be utilized to identify the object. Using a deep-learning network and time-frequency analysis, we offer a method for classifying pedestrians and animals based on their micro-Doppler radar signature features. Based on these signatures, we employed a convolutional neural network (CNN) to recognize pedestrians and animals. The proposed approach was evaluated on the MAFAT Radar Challenge dataset. Encouraging results were obtained, with an AUC (Area Under Curve) value of 0.95 on the public test set and over 0.85 on the final (private) test set. The proposed DNN architecture, in contrast to more common shallow CNN architectures, is one of the first attempts to use such an approach in the domain of radar data. The use of the synthetic radar data, which greatly improved the final result, is the other novel aspect of our work.


Language: en

Keywords

deep learning; animal recognition; doppler radar; micro-Doppler signature; pedestrian recognition

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print