SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu Z, Li F, Zhu Y, Lu K, Wu M. Sensors (Basel) 2022; 22(9): 3359.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22093359

PMID

35591049

Abstract

Multi-Target tracking is a central aspect of modeling the environment of autonomous vehicles. A mono camera is a necessary component in the autonomous driving system. One of the biggest advantages of the mono camera is it can give out the type of vehicle and cameras are the only sensors able to interpret 2D information such as road signs or lane markings. Besides this, it has the advantage of estimating the lateral velocity of the moving object. The mono camera is now being used by companies all over the world to build autonomous vehicles. In the expressway scenario, the forward-looking camera can generate a raw picture to extract information from and finally achieve tracking multiple vehicles at the same time. A multi-object tracking system, which is composed of a convolution neural network module, depth estimation module, kinematic state estimation module, data association module, and track management module, is needed. This paper applies the YOLO detection algorithm combined with the depth estimation algorithm, Extend Kalman Filter, and Nearest Neighbor algorithm with a gating trick to build the tracking system. Finally, the tracking system is tested on the vehicle equipped with a forward mono camera, and the results show that the lateral and longitudinal position and velocity can satisfy the need for Adaptive Cruise Control (ACC), Navigation On Pilot (NOP), Auto Emergency Braking (AEB), and other applications.


Language: en

Keywords

Extended Kalman Filter; mono camera; multi-target tracking; Navigation On Pilot; YOLO

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print