SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Qiao R, Guo Y, Zhou H, Xi H. Materials (Basel) 2022; 15(9): e3131.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ma15093131

PMID

35591465

Abstract

Traditional heat transfer analysis has been adopted to predict the damage in a tunnel under fire without considering the effect of concrete spalling, which leads to underestimation of the fire damage of concrete. However, accounting for the spalling effect of concrete under high temperature in an analytical heat transfer model is difficult because of the complexity of the spalling mechanism. This study aims to establish an analytical model to estimate the influence of concrete spalling on the fire-damage depth prediction. To overcome this challenge, first, a series of fire tests were conducted in a unidirectional heating system. The spalling phenomenon and spalling characteristics were observed. Based on the experimental test results, the moisture content of concrete is one of the key factors of spalling. Obvious layered spalling characteristics of concrete samples without drying could be observed under the unidirectional heat conduction system. The critical temperature of spalling is 600 °C, and the thickness of the spalling layer is 2 cm~2.5 cm. These two parameters are critical spalling conditions. Second, a multilayer model for the heat transfer analysis considering the spalling effect of tunnel lining under fire was proposed. By using Laplace transform and the series solving method for ordinary differential equations, the time-dependent temperature and stress fields of concrete lining during tunnel fire could be obtained, which are the basis of damage evolution. The analytical results agreed with the experimental data. The spalling depth of tunnel lining related to the temperature rise of tunnel fire could be predicted by using the proposed analytical model. The results of this research can be used to provide a better damage evaluation of tunnel lining under fire.


Language: en

Keywords

concrete lining; explosive spalling; multilayer model; spalling depth prediction; tunnel fire

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print