SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhou HY, Yan SS, Li J, Dong H, Zhou P, Wan L, Chen XX, Zhang WL, Xia YC, Wang PC, Wang BG, Liu K. ACS Appl. Mater. Interfaces 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, American Chemical Society)

DOI

10.1021/acsami.2c05016

PMID

35587195

Abstract

Poly(ethylene oxide) (PEO)-based solid electrolyte suffers from limited anodic stability and an intrinsic flammable issue, hindering the achievement of high energy density and safe all-solid-state lithium batteries. Herein, we surprisingly found out that a bromine-rich additive, decabromodiphenyl ethane (DBDPE), could be preferably oxidized at an elevated voltage and decompose to lithium bromide at an elevated potential followed by inducing an organic-rich cathode/electrolyte interphase (CEI) on NCM811 surface, enabling both high-voltage resistance (up to 4.5 V) and flame-retardancy for the PEO-based electrolyte. On the basis of this novel solid electrolyte, all-solid-state Li/NCM811 batteries deliver an average reversible capacity of 151.4 mAh g(-1) over the first 150 cycles with high capacity retention (83.0%) and high average Coulombic efficiency (99.7%) even at a 4.5 V cutoff voltage with a unprecedented flame-retardant properties. In view of these exploration, our studies revealed the critical role of LiBr in inducing an organic-rich thin and uniform CEI passivating layer with enhanced lithium ion surface diffusion and high-voltage resistant properties, which provides a new protocol for the further design of a high-voltage PEO-based all-solid-state electrolyte.


Language: en

Keywords

all-solid-state lithium batteries; flame-retardancy; high-voltage; lithium bromide; organic-rich cathode/electrolyte interphase; poly(ethylene oxide)-based solid electrolyte

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print