SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Atif M, Zoppi T, Gharib M, Bondavalli A. Sensors (Basel) 2022; 22(7): e2683.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22072683

PMID

35408298

Abstract

Automatic Traffic Sign Detection and Recognition (TSDR) provides drivers with critical information on traffic signs, and it constitutes an enabling condition for autonomous driving. Misclassifying even a single sign may constitute a severe hazard, which negatively impacts the environment, infrastructures, and human lives. Therefore, a reliable TSDR mechanism is essential to attain a safe circulation of road vehicles. Traffic Sign Recognition (TSR) techniques that use Machine Learning (ML) algorithms have been proposed, but no agreement on a preferred ML algorithm nor perfect classification capabilities were always achieved by any existing solutions. Consequently, our study employs ML-based classifiers to build a TSR system that analyzes a sliding window of frames sampled by sensors on a vehicle. Such TSR processes the most recent frame and past frames sampled by sensors through (i) Long Short-Term Memory (LSTM) networks and (ii) Stacking Meta-Learners, which allow for efficiently combining base-learning classification episodes into a unified and improved meta-level classification. Experimental results by using publicly available datasets show that Stacking Meta-Learners dramatically reduce misclassifications of signs and achieved perfect classification on all three considered datasets. This shows the potential of our novel approach based on sliding windows to be used as an efficient solution for TSR.


Language: en

Keywords

classification; deep learning; meta learning; sliding windows; traffic sign recognition

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print