SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Olaby O, Hamadache M, Soper D, Winship P, Dixon R. Sensors (Basel) 2022; 22(6): 2401.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22062401

PMID

35336573

Abstract

Currently, a number of positioning systems are in use to locate trains on the railway network; but these generally have limited precision. Thus, this paper focuses on testing and validating the suitability of radio frequency identification (RFID) technology, for aligning vehicles to switch and crossing (S&C) positions on the railway network. This offers the possibility of accurately knowing the position of vehicles equipped with monitoring equipment, such as the network rail track recording vehicle (TRV), and aligning the data with reference to the locations of the S&C (and ideally to key elements within a particular S&C). The concept is to install two tags, one on the switch-toe sleeper and the second on the crossing-nose sleeper, with an RFID reader that will be installed underneath the vehicle. Thus, the key features of the S&C, the switch toe and crossing nose, will be considered as a definitive reference point for the inspection vehicle's position. As a monitoring vehicle passes over a piece of S&C, the proposed positioning system will provide information about this S&C's ID, which is stored inside the RFID tags and will indicate the S&C's GPS coordinates. As part of the research in this paper, more than 400 tests have been performed to investigate two different RFID technologies, passive and semi-passive, tested in a variety of conditions: including different passage speeds, different distances between the RFID reader and the tags, and varied strength signal transmitted between the reader and the tags. Based on lab testing and analysis of the recorded data, it is concluded that passive RFID technology is the most suitable of the two technologies. The conclusions find that the proposed RFID-based solution can offer a more precise positioning solution to be a reference point for the train location within the network.


Language: en

Keywords

positioning system; railway; RFID technology; track switch and crossing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print