SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang D, Fu W, Song Q, Zhou J. Sci. Rep. 2022; 12(1): e4981.

Copyright

(Copyright © 2022, Nature Publishing Group)

DOI

10.1038/s41598-022-08810-z

PMID

35322105

Abstract

This study aimed to explore how autonomous vehicles can predict potential risks and efficiently pass through the dangerous interaction areas in the face of occluded scenes or limited visual scope. First, a Dynamic Bayesian Network based model for real-time assessment of potential risks is proposed, which enables autonomous vehicles to observe the surrounding risk factors, and infer and quantify the potential risks at the visually occluded areas. The risk distance coefficient is established to integrate the perception interaction ability of traffic participants into the model. Second, the predicted potential risk is applied to vehicle motion planning. The vehicle movement is improved by adjusting the speed and heading angle control. Finally, a dynamic simulation platform is built to verify the proposed model in two specific scenarios of view occlusion. The model has been compared with the existing methods, the autonomous vehicles can accurately assess the potential danger of the occluded areas in real-time and can safely, comfortably, and effectively pass through the dangerous interaction areas.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print